
1 | ANU College of Engineering and Computer Science August 2020

TASkS
Week 3 Laboratory for Concurrent and Distributed Systems

Uwe R. Zimmer based on material by Alistair Rendell

Pre-Laboratory Checklist

vv Skills:vYouvcanvedit,vloadvandvrunvAdavprogramsv(youvremembervgps&).

vv Youvunderstandvbasic,vstaticvtypevconcepts.

vv Youvunderstandvinvfullvwhatvinformationvhidingvandvexceptionvhandlingvmeans.

vv Youvknowvsomevaspectsvofvgenericvprogrammingv(staticvpolymorphism).

Objectives
The objective of this exercise is for you to create and handle your first concurrent entities –
called tasks here. Creating tasks in Ada is syntactically easy, and you will also learn in this lab
about the basic features of a task and what you can do with it.

Interlude: Most basic tasks

In Ada each task corresponds to a data object, called a task object. Associated with each task
object is a sequence of statements to be executed and an optional interface for synchroniza-
tion and/or communication with other tasks.

Like other data objects, task objects belong to types, in this case task types. All the task ob-
jects in the same task type share certain characteristics:

• Every task independently executes the same sequence of statements.

• Every task instance has its own copy of local variables (which are initialized in the same way).

• Every task instance has its own set of independent interfaces, even though
they all share the same syntactical form as given by the task type.

All task types are limited! That is tasks cannot be copied or tested for equality.

Like for procedures or functions (and other complex objects which we will learn about later),
tasks are declared in two parts: a task (type) declaration and a task body. As with function
definitions before we can place the declaration part into a specification package and the body
part into the implementation (body) package. Just like with functions, the task (type) declara-
tion specifies the interface to the task (type) (its entries), while the task body contains the
statements executed by this task or by tasks of this type. As with any scoped programming
language, you can add declarations to the body of a task, which will be local to this task (type).

2 | ANU College of Engineering and Computer Science August 2020

The following syntax is used to declare a task (type):

task [type] identifier [discriminant-part] [is

 entry-declaration

 ...

 entry-declaration

end identifier];

You will have noticed that I mention “type” always in parenthesis and it is optional for the task
declaration. Leaving it out is simply a shortcut to declare a single task instance without need-
ing to introduce a task type first. Our very first example below will be so simple that we won’t
need an explicit task type. In fact we won’t even need any interface to the first tasks and so we
can declare the most simple kind of tasks (a singleton task) just with:

task identifier;

The body part of a task looks very similar to a procedure, yet there are no parameters which
could be passed:

task body identifier is

 declarative-part

begin

 sequence-of-statements

exception

 handler

 ...

 handler

end identifier;

Tasks are “running” on declaration (or allocation as we will see later). To be more precise, Ada
guarantees that a declared task is up and running before the first statement after the next
begin. In the above case of a singleton task, the single task will be in state “running” right after
it has been declared with task identifier;. All declarations inside a task body are local to the
specific instance of a task (of course in case of a singleton task, there is only one) and thus
data which need to be (memory) shared between tasks need to be declared outside of both
communicating tasks. There will be a lot more on this data sharing subject a little later, as it is a
crucial part of concurrent systems.

Exercise 1: Let there be tasks

Let’s have a look at a very simple example and make our first observations what all this actually
means.

with Ada.Text_IO; use Ada.Text_IO;

procedure Two_Tasks is

 task First_One;

 task Second_One;

 task body First_One is

 begin

 Put (“Hello .. “);

 Put_Line (“and goodbye world from task 1”);

 end First_One;

3 | ANU College of Engineering and Computer Science August 2020

 task body Second_One is

 begin
 Put (“Hello .. “);
 Put_Line (“and goodbye world from task 2”);
 end Second_One;

begin
 Put (“Hello .. “);
 Put_Line (“and goodbye world from Two_Tasks”);
end Two_Tasks;

Before you go any further, make a prediction of what will happen if you run this program and
explain it to your neighbour.

Once you agree with your neighbour that this is exactly what is to be expected, download this
simple program from the course-site and run it1. What actually happened? Run it again. What
happened this time? Is your computer broken? Does your neighbour see the same thing?

Maybe it would help to look at the watch while things are progressing along. Here is a simple
program which will print out the current time in a loop:

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Calendar; use Ada.Calendar;

procedure Timestamp is

 No_of_Iterations : constant Positive := 10;
 Delay_Per_Iteration : constant Duration := 1.0;

 Start_Up_Time : constant Time := Clock2;

 subtype Repeat_for is Positive range 1 .. No_of_Iterations;

begin
 for i in Repeat_for loop3

 declare
 Now : constant Time := Clock4;

 begin
 Put (Day_Number’Image (Day (Now)) & “.”);
 Put (Month_Number’Image (Month (Now)) & “.”);
 Put (Year_Number’Image (Year (Now)) & “ at”);
 Put (Day_Duration’Image (Seconds (Now)) & “ seconds - since start up:”);
 Put (Duration’Image (Now - Start_Up_Time));
 New_Line;
 delay Delay_Per_Iteration;
 end;
 end loop;
end Timestamp;

Run this time-stamping program (it is part of your previous download). What do you observe?

• How are the two different “second” measurements different?
• What is the unit of Duration?
• Everything in this program seems to be declared as constants – can this be right?

1 Run this on the command line (terminal) instead of from inside GPS. Depending on the op-
erating system, GPS may bundle outputs and won’t show you intermediate results.

2 Apparently Clock is function which will return different values at different times … hence the name …
3 Of course I could have just written for i in 1 .. 10 loop, yet I thought to be clean-

er in style from the very beginning and avoid constants (other than obvious cor-
ner values like 0 or 1) inside code sections as much as possible.

4 This call to Clock will be evaluated every time this declare block is entered and the Now constant is declared,
i.e. with every loop iteration. Why am I doing this? Simply because constants are nicer than variables, in
case you will ever need to run your programs through a certification process or formally verify your code.

4 | ANU College of Engineering and Computer Science August 2020

Now change the line:

delay Delay_Per_Iteration;

to:

delay until Start_Up_Time + i * Delay_Per_Iteration;

Run your program again and try to spot the difference. You may want to open two terminal win-
dows side-by-side with one version running in each window to spot the differences more easily.
The difference is vital for real-time systems as you may learn later. As a general reflex, program-
mers coming from a high-integrity or real-time background will always prefer absolute delay
expressions (implemented by the delay until statement in Ada) if they have a choice.

Now to your final job in this exercise: Create the Two_Tasks_Timestamped program such that
your tasks are not only friendly (as in the original Two_Tasks program), but also print out the
time stamps when they were producing those texts. (Copy most of the Two_Tasks program and
amend it with appropriate time-stamp outputs.)

Then answer the following questions:

• In the first shot, your screen output was probably some-
what of a mess. Why was that? Can you repair that?

• How many tasks are running in your Two_Tasks program? As I ask like that:
the answer is obviously not two – but how many are actually there?

Submit your code to the SubmissionApp under “Lab 3 Two tasks timestamped“. We will check
out most of your code and will attempt to give you feedback on all levels of coding.

Exercise 2: Sharing tasks (the naïve way – don’t do this at home)

We said above, in order to share data between tasks, the data needs to be declared outside of
those tasks. So let’s declare a variable Sum outside the scope of a simple task type and then
instantiate a few tasks that work on this variable:

with Ada.Text_IO; use Ada.Text_IO;

procedure Counter_Test is

 Sum : Natural := 50;

 task type Counter (Id : Positive; Goal : Natural)5;

 task body Counter is

 begin
 while Sum /= Goal loop
 Sum := (if Sum > Goal then Sum - 1 else Sum + 1)6;
 Put (Natural’Image (Sum));
 delay 0.0; -- try leaving out this delay statement!
 end loop;

 New_Line;
 Put_Line (“Counter task” & Positive’Image (Id) &
 “ terminates with sum being:” & Natural’Image (Sum));
 end Counter;

5 Observe that this task type has discriminants so that we can later instanti-
ate a few of those tasks with different values for those discriminants.

6 Conditional expressions make code neater and more compact. Your functional programming back-
ground will probably help you writing code in such succinct forms in imperative languages as well.

http://cs.anu.edu.au/SubmissionApp

5 | ANU College of Engineering and Computer Science August 2020

 Counter_1 : Counter (1, 30);
 Counter_2 : Counter (2, 40);
 Counter_3 : Counter (3, 60);
 Counter_4 : Counter (4, 70);

begin
 New_Line;
 Put_Line (“Counter_Test terminates with sum being:” & Natural’Image (Sum));
end Counter_Test;

It is important that you answer the questions below before you run this program:

• Will this program terminate?

• What will it display (if anything)?

• Very important: what will be the value (or the possible values) for the fi-
nal “Counter_Test terminates with sum being: ..” output)?

Discuss your answers with other people in the lab who are just doing the same exercise – oth-
erwise your tutor.

Now download and run the program. How close were you? Do a number of tests and see
whether the value at the end of the each task is actually always identical with its goal value. You
will find that this will not always be the case. If you can answer why this is you have understood
the essence of this lab.

Exercise 3: Synchronize just enough

For this advanced exercise, take the Counter_Test_Synchronized program (which is included in
the previous download, yet is just a direct copy of the Counter_Test program) and make sure
that the value of sum (as it is displayed at the end of each task) is actually the desired goal
value. This will be very easy once you learn about the tools to protect data against improper
mutual access (protected objects or synchronous message passing as it will be introduced
in upcoming labs). Yet the point of this exercise is to implement this with nothing but atomic
shared variables. It is painful and educational to do so (this is what your parents always re-
ferred to as character building). Start with only two tasks and then see whether you can imple-
ment a mutual exclusion method which could handle a random number of tasks. You will likely
make mistakes in at least some of your attempts – so did I. You succeeded if you amended
the Counter_Test_Synchronized program to always read out and display the correct results at
the end – and also convinced yourself that you will never ever do it like that again. If you still
believe this is a great way of handling concurrency, come to us for more exercises.

Submit your code to the SubmissionApp under “Lab 3 Atomic sync counter“ and receive the
code for the same module from a fellow student (all anonymously via the SubmissionApp). The
code is run as you wrote it – no additional tests are being added. Check out how your col-
league solved this problem and provide feedback for him/her. Be specific and constructive with
your feedback. If you think it doesn’t work then give an example where it breaks.

Make Sure You Logout
to terMinate Your SeSSion!

Outlook
Next week you will be handling communicating tasks and learn more about how long tasks live.

http://cs.anu.edu.au/SubmissionApp

